AI ENGINEERING

MASTER UNIVERSITARIO DI I LIVELLO – CORSO DI FORMAZIONE UNIVERSITARIA

Il percorso in AI Engineering della Digital School si rivolge sia a diplomati (corso di formazione universitaria) che laureati (master di I livello).

Durata 12 mesi

Full online in live streaming e on demand

Stage garantito e Tirocinio formativo

Career Counselor

Riconosciuto dal MUR

Requisiti

Didattica

Tirocinio formativo

Opportunità

Career Lab

Dicono di noi

Obiettivi del Master e Corso di formazione universitaria online in AI Engineering

Il corso online permette di acquisire le competenze necessarie per comprendere, progettare, realizzare, gestire e correggere sistemi di Intelligenza Artificiale applicati a contesti reali, Machine Learning e applicazioni AI per dispositivi mobili.

Grazie agli insegnamenti, gli studenti avranno sviluppato le competenze per creare applicazioni AI end-to-end: dalla progettazione di chatbot e interfacce vocali all’integrazione di computer visioni e automazioni business-oriented, fino al deployment di soluzioni scalabili.

Al termine delle lezioni è previsto lo svolgimento di uno stage formativo (in un’azienda convenzionata o attraverso un project work di gruppo) in cui lo studente potrà applicare fin da subito tutte le nozioni e competenze acquisite.

Didattica

Il corso di formazione universitaria e master di I livello online in AI Engineering è composto da lezioni on demand e live webinar.

Le lezioni sono accessibili in ogni momento da qualsiasi dispositivo (computer, tablet e smartphone) grazie alla piattaforma personalizzata eCampus.
I live webinar teorico-pratici sono divisi in otto weekend (uno al mese per un totale di 128 ore), di sabato e domenica, ed approfondiscono argomenti specifici con esercitazioni correlate.

Requisiti di ammissione

  • Laureati: Laurea di I o II livello, Laurea a ciclo unico o Laurea del Vecchio ordinamento
  • Diplomati: Diploma di Scuola Secondaria di II Grado riconosciuto in Italia

** TITOLI DI STUDIO ESTERI: devono essere riconosciuti come equipollenti ai titoli di studio italiani attraverso la dichiarazione di valore, documento rilasciato dalle attività consolari

Titoli rilasciati

  • Laureati: Diploma di Master Universitario di I Livello
  • Diplomati: Attestato di Frequenza

Piano di studi

Lezioni on demand

Fondamenti di informatica (12 CFU)
Il corso introduce gli studenti ai concetti teorici e pratici alla base del funzionamento dei moderni calcolatori e della programmazione. Attraverso lo studio dell’architettura dei computer, degli algoritmi e dei linguaggi di programmazione, gli studenti imparano a progettare soluzioni informatiche efficienti, a sviluppare programmi in Java, a comprendere, analizzare e ottimizzare algoritmi, utilizzare correttamente la terminologia tecnica e acquisire autonomia nell’apprendimento e nell’uso degli strumenti digitali.

Modelli matematici e statistici per l’intelligenza artificiale (6 CFU)
Il corso introduce gli studenti ai fondamenti teorici e pratici della modellazione matematica e statistica nell’ambito dell’AI. Il percorso sviluppa le competenze per rappresentare, analizzare e interpretare fenomeni complessi, comprendere e applicare modelli predittivi, selezionare tecniche di machine learning adeguate e comunicare i risultati ottenuti in modo chiaro ed efficace.

Sistemi di IA Generativa (9 CFU)
Il corso offre una panoramica approfondita sull’AI Generativa (Gen AI), con un’introduzione ai modelli linguistici di grandi dimensioni (LLM), agli agenti intelligenti e ai principali attori del settore e alle tecnologie attualmente disponibili. Focus del corso è l’applicazione concreta di questi strumenti all’interno di processi e soluzioni aziendali. Per le attività pratiche si usano strumenti come Google Colab, OpenAI, LangChain, CrewAI, con Python come linguaggio di riferimento.

Introduzione all’Intelligenza Artificiale e Machine Learning (9 CFU)
Il corso introduce i concetti fondamentali dell’IA e del Machine Learning, fornendo una panoramica storica, teorica ed etica di queste tecnologie. Attraverso l’uso pratico di strumenti come Google Colab e Python, gli studenti imparano a gestire i dati, applicare modelli di apprendimento supervisionato e non supervisionato, e valutare le prestazioni dei modelli con metriche appropriate.

Live webinar (18 CFU)

Weekend 1: Superpoteri con l’AI: crea strumenti intelligenti senza codice
Impara a usare GPTs personalizzati, Canvas collaborativi e Artifacts per creare contenuti e automazioni avanzate con l’interfaccia ChatGPT.

Weekend 2: Il lato nascosto dell’AI: usare le API senza programmare
Scopri cosa sono le API e come collegarti a modelli di AI tramite strumenti no-code.

Weekend 3: Costruisci il tuo assistente virtuale con le API
Progetta e realizza un bot AI personalizzato che risponde, cerca e lavora per te.

Weekend 4: Visione artificiale per applicazioni intelligenti
Integra l’analisi di immagini in flussi operativi reali: riconoscimento, classificazione e generazione.

Weekend 5: Voce e AI: crea servizi che ascoltano e parlano
Costruisci un’interfaccia vocale AI in grado di interagire con gli utenti o con sistemi esterni.

Weekend 6: Automazioni intelligenti per il business e i servizi
Progetta flussi AI che si attivano da soli, prendono decisioni e completano compiti.

Weekend 7: La tua prima app AI completa, senza scrivere codice
Usa strumenti low-code e no-code per creare un’app con interfaccia utente e AI integrata.

Weekend 8: Porta la tua AI nel mondo: pubblica e condividi la tua applicazione
Impara a fare il deployment della tua app AI: domini, hosting, interfacce e distribuzione

Tirocinio formativo

Il corso di formazione universitaria e master online di I livello in AI Engineering della Digital School prevede lo svolgimento di un tirocinio formativo che rispetta le esigenze di tutti i suoi studenti lavoratori e non.

Per questo motivo sono previste due modalità di tirocinio di almeno 75 ore:

  • Tirocinio esterno: da svolgere presso un’azienda convenzionata con eCampus o aziende partner in presenza, in modalità ibrida o in smart working.
  • Tirocinio interno: questa tipologia è gestita completamente in modalità smart working e prevede la partecipazione di un ciclo di laboratori online introduttivi e lo svolgimento di un project work di gruppo.

Per maggiori informazioni visita la pagina Lavoro.

master executive

Opportunità e sbocchi professionali

Il percorso forma figure altamente specializzate nell’ambito di AI, Machine Learning, LLM, app AI e sviluppo di sistemi di automazioni intelligenti per il business e i servizi.

Grazie alle competenze teoriche, pratiche e tecniche acquisite, i partecipanti potranno ricoprire alcuni dei ruoli più richiesti in assoluto sul mercato odierno e futuro del lavoro in rapidissima evoluzione come AI Specialist o AI App Developer.

Career Lab: Progetto Employability 4 Digital School

Il progetto Employability 4 Digital School nasce con l’obiettivo di generare “occupabilità” degli studenti, attraverso colloqui individuali motivazionali e di orientamento .

I colloqui individuali sono affiancati da workshop dedicati a come approcciare il mondo del lavoro nel digital marketing.

I temi trattati durante i Career Lab riguardano come scrivere un curriculum in modo efficace, come cercare e trovare lavoro, anche attraverso l’utilizzo dell’Intelligenza Artificiale, come prepararsi a un colloquio di lavoro e personal branding.

Per avere maggiori informazioni visita questa pagina.

Sbocchi lavorativi

I principali sbocchi professionali con un Attestato o Diploma di Master in AI Engineering sono:

AI Engineer

Progetta e sviluppa modelli di Machine Learning e Deep Learning, crea sistemi intelligenti capaci di apprendere dai dati e automatizza processi complessi in diversi settori.

Machine Learning Engineer

Specialista nella costruzione e ottimizzazione di algoritmi di apprendimento automatico, si occupa di trasformare modelli di AI in applicazioni scalabili e integrate in sistemi software.

AI Specialist

Esperto nell’analisi e implementazione di soluzioni AI, lavora su progetti di innovazione tecnologica, migliorando processi aziendali con tecniche di Intelligenza Artificiale.

Data Scientist

Analizza grandi volumi di dati per estrarre informazioni strategiche, supportando decisioni aziendali attraverso modelli predittivi basati su AI.

Sviluppatore di applicazioni AI

Si occupa della programmazione e dell’interfacciamento di applicazioni intelligenti, garantendo un’ottima esperienza utente e l’integrazione con sistemi AI complessi.

Perché scegliere Digital School

Didattica 100% online

Tutte le lezioni, i live webinar e workshop si svolgono online per garantire la massima flessibilità agli studenti.

Riconosciuta dal MUR

I master di I livello e i corsi di formazione universitaria sono riconosciuti dal Ministero dell’Università e della Ricerca (MUR).

Stage garantito

Al termine del percorso è previsto un tirocinio da svolgere o in presenza o da remoto in una delle nostre aziende partner, oppure da svolgere completamente online.

Supporto personalizzato

Ogni studente riceve supporto personalizzato grazie ai tutor online (TOL) che affiancano e consigliano lo studente lungo tutto il percorso.

Employability 4 Digital School

Il progetto Employability 4 Digital School ha l’obiettivo di generare “occupabilità” attraverso colloqui motivazionali e di orientamento, accompagnando gli studenti sia nella fase di stage che in chiusura del percorso con colloqui e workshop su come approcciare il mondo del lavoro.

Docenti esperti del settore

Impara dai migliori del settore! Tutti i docenti di Digital School sono professionisti esperti del settore.

Dicono di noi